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Abstract— This paper presents characterization of affect
(valence and arousal) using the Magnetoencephalogram (MEG)
brain signal. We attempt single-trial classification of movie
and music videos with MEG responses extracted from seven
participants. The main findings of this study are that: (i) the
MEG signal effectively encodes affective viewer responses, (ii)
clip arousal is better predicted than valence employing MEG
and (iii) prediction performance is better for movie clips as
compared to music videos.

I. INTRODUCTION

Humans perceive emotions from the environment through
visual and auditory stimuli- characterized by speech, au-
dio/video music clips, images and movies in the digital
world. While many studies have investigated how speech
and image signals can effectively elicit emotions in peo-
ple [15], [18], research on isolating emotional content in
music and movie videos began only recently. Past works
such as [7], [9] have attempted to identify emotions either
by (i) analyzing the content to develop models that link low-
level image and audio features to valence (emotion type)
and arousal (emotion intensity) or (ii) analyzing the viewer’s
facial activity/expressions and correlating these responses
with the presented content. While content-based analysis
enables discovery of video highlights (typically high-arousal
segments), it is inherently not suited for tagging content on
the valence-arousal plane. Conversely, while facial expres-
sions can provide some insight regarding emotional video
content, they can easily be controlled by the viewer and
are therefore, not always reliable. The above shortcomings
have prompted researchers to investigate emotional response
to affective stimulus considering both peripheral nervous
system signals and peripheral physiological signals such as
(i) Electroencephalogram (EEG), which measures electrical
activity along the scalp, (ii) Electromyogram, measuring
electrical activity of skeletal muscles, (iii) heart rate, (iv)
galvanic skin response (GSR) measuring skin conductance
and (v) skin temperature. These signals have been found
to effectively encode emotional responses [12], [10] and
are more primitive than facial expressions, which typically
denote the conscious manifestation of an emotion.

This work explores a new type of peripheral nervous
system signal that records the functional brain activity non-
invasively. The purpose of our study is to investigate the
use of Magnetoencephalogram (MEG) to decode emotional
responses from the brain recording when a subject is exposed
to affective videos. MEG is a technology that allows the
recording of the magnetic fields produced by the electrical
activity of the brain. When a group of neurons is acti-

vated, electrical currents along the neurons generate tiny,
orthogonally oriented magnetic fields. The sum of these
magnetic fields generates a change in magnetic field around
the activated part, and constitutes the MEG response.

Furthermore, single trial decoding of MEG responses
is attempted. While many EEG studies (e.g., [12], [10],
[20]) have successfully decoded affective viewer response to
videos, there are no such MEG-based studies. However, the
fact that MEG can effectively encode affective responses,
similar to EEG, is demonstrated in [17] employing image
stimuli. Their results are obtained on analyzing event-related
magnetic fields (ERF), where an individual’s brain responses
are acquired over many trials and averaged. In contrast. This
is first study employing single-trial MEG classification for
decoding affective viewer responses to videos.

Another aspect investigated in this work is the suitability
of different types of video stimuli for emotion elicitation.
For a study examining viewers’ emotional responses to be
successful, the employed stimuli should effectively elicit the
emotions targeted by the study. While some works have
attempted to identify appropriate video stimuli for studying
affect [6], [3], different authors have employed different
stimuli for emotion elicitation. [12] presents an affect char-
acterization study using 21 movie clips, while the authors
in [10] elicit emotions through music videos.

This work analyzes the suitability of i) movie clips and
ii) music videos for measuring affect with MEG signals.
We present results of a preliminary study involving seven
participants, where the MEG responses of each subject
were recorded as they viewed 32 movie clips and 40 mu-
sic videos over two separate experimental sessions. Every
participant also provided valence and arousal ratings for
each movie/music clip during the experiment. The MEG
responses were then correlated with these ratings to train
a classifier for predicting a clip’s valence/arousal tag (as
’high’ or ’low’). Our experimental results suggest that (i) the
MEG signal effectively encodes affective viewer responses,
(ii) clip arousal is better predicted than valence employing
MEG and (iii) prediction performance is better for movie
clips as compared to music videos.

II. RELATED WORK

While affective content creators intend to convey a certain
emotion (or a set of emotions) through a music/movie video,
the actual emotion induced on viewing the video is influ-
enced by a number of psychological and contextual factors,
and is therefore, highly subjective. Therefore, correlating the
observed emotional response with the expected response is a



non-trivial problem which is typically simplified in practice
employing the following ideas: (1) Most affective studies
assume that the entire gamut of human emotions can be
represented as a set of points on the valence-arousal plane as
demonstrated by Greenwald et al. in [5], and (2) To largely
ensure that the elicited and expected emotions are consistent,
the presentation stimuli are carefully selected based on
previous studies, or based on ’ground truth’ valance-arousal
ratings compiled from a large pool of subjects who evaluate
the stimuli prior to the actual experiment.

Emotional states have been found to produce specific types
of physiological responses- e.g., excitement is associated
with increased heart-beat and respiration rates, and this
correlation is exploited in a number of physiology-based
affect studies. Heart-rate, skin temperature and conductance
level, blood pressure and facial EMG are recorded as subjects
view affective imagery in [18]. Their experiments indicate
that the responses for anger and fear are uniquely distinctive
from the responses to neutral images.

Among physiology-based affective studies with video
stimuli, Lisetti and Nasoz [12] employ a two-pronged ap-
proach to elicit frustration along with other emotions from
29 participants. They use prototypical movie clips to evoke
sadness, anger, amusement, fear and surprise, and induce
frustration by asking subjects to solve difficult mathematical
questions without pencil and paper. GSR, heart rate, temper-
ature, EMG and heat flow responses are recorded using an
armband, and over 80% accuracy is obtained in classifying
the aforementioned emotions using extracted features. In
the DEAP dataset, Koelstra et al. [10] record EEG, GSR,
blood volume pressure, respiration rate, skin temperature and
Electrooculogram (EOG) patterns as viewers are presented
with 40 one-minute music video segments. These responses
are correlated with arousal, valence, liking and dominance
ratings provided by participants during the experiment. A
mean accuracy of over 60% is obtained for single-trial
binary classification with EEG and peripheral physiological
signals. The MAHNOB-HCI multimodal database compiled
by Soleymani et al. [20] contains face videos, audio and
physiological signals as well as eye-gaze data of 27 partic-
ipants who watched 20 emotional movie/oline clips in one
experiment, and 28 images and 14 short videos in another.
Their database facilitates affect computation using single or
modalities and determination of the most suitable modalities.

Upon reviewing related literature, one can make the
following observations: (1) All these studies, apart from
DEAP, derive their conclusions from experiments involving
a relatively small number of stimuli. This is because such
studies are inherently hard to conduct. One needs to take into
account the time required for subject preparation, stimulus
viewing and recording user ratings while designing the exper-
iment protocol. Also, the fact that fatigue strongly influences
the quality of emotional responses discourages lengthy ex-
periments with many stimuli. (2) While all these approaches
have been generally successful in isolating physiological
correlates of specific emotions arising from the presented
stimuli, no comparison studies have been made to determine

which stimulus is ideally suited for affect computation, given
the experiment hypotheses and duration. This paper presents
one of the first steps in that direction.

III. EXPERIMENTAL PROTOCOL

In this section, we present a brief description of (a) MEG
and (b) stimuli selection procedure, before detailing the (c)
experimental set-up and protocol, and (d) analysis of self-
assessment ratings for the music and movie clips.

A. Magnetoencephalogram

MEG is a recent technology that enables non-invasive
recording of brain activity, and is based on SQUIDS (Super-
conducting Quantum Interference Devices), which enables
recording of very low magnetic fields. Magnetic fields pro-
duced by the human brain are of the order of pico-Tesla
and since sensors are really sensitive to noise, the MEG
equipment is located in a shielded room insulated from other
electrical/metallic installations. A multiple coils configura-
tion enables measurement of magnetic fields induced by
tangential currents, and thus, brain activity in the sulci of
the cortex can be recorded.

B. Stimuli selection procedure

As mentioned earlier, many affective studies have been
conducted with image stimuli, and there exist standard
datasets such as [11] for researchers to conduct experiments
and evaluate their findings. However, there exist few affective
video datasets, in spite of studies confirming that reliable
emotion elicitation is feasible with video stimuli such as
movies [8]. An affective music video dataset, comprising
40 music videos, was recently presented in [10]. Our en-
deavor was to create a large-sized affective movie dataset
along those lines owing to the following reasons: (1) The
importance of context in emotion perception has been ac-
knowledged by many studies (e.g.,[2]). Temporal context can
be conveyed effectively by both audio and visual content in
movies, whereas context in music videos is predominantly
conveyed by the audio, which is supplemented by the visuals;
(2) As a result, movies can effectively elicit a larger range
of emotions (e.g., including surprise/shock and fear) as
compared to music videos.

To this end, we initially compiled a set of 48 Hollywood
movie clips, suggested as suitable for affective studies in [6],
[3]. These clips were shown to 42 subjects, who self-assessed
their emotional state upon viewing each clip, to provide
valence and arousal ratings as well as the most appropriate
emotion tag (e.g., funny, exciting) for each movie clip. Divid-
ing the valence-arousal plane into 4 quadrants (corresponding
to high/low valence and arousal), we finally chose 32 movie
clips which obtained the most consistent and representative
scores for the experiment, to have a balanced distribution
of 8 clips/quadrant. These clips were between 51 sec and
128 sec long (µ = 81, σ = 21.5), and were associated with
diverse emotional tags such as funny, amusing, exciting, sad,
disgusting and angering. To investigate whether MEG-based
affect recognition varied with the stimulus type, we also used



the 40 one-minute music video highlights suggested in [10]
in our experiments.

C. Experimental set-up

1) Materials and set-up: All MEG recordings were per-
formed in a shielded room with controlled illumination. Fig.
1(a) presents an overview of the experimental set-up. Due to
the sensitivity of the MEG equipment, all other devices used
for data acquisition were placed in an adjacent room, and
were controlled by the experimenter. Two PCs were used,
one (Intel i7, 8 GB RAM) for stimulus presentation and
the other for MEG data recording. The stimulus presenta-
tion protocol was developed using MATLAB’s Psychtoolbox
(http://psychtoolbox.org/) along with some functions adapted
from the ASF stimulus presentation framework [19]. Also,
synchronization markers were sent from the stimulus pre-
senter PC to the MEG recorder at the beginning and end of
each stimulus display. All stimuli were shown at a resolution
of 1024× 768 pixels and at a screen refresh rate of 60 Hz,
and this display was projected onto a screen placed about a
meter in front of the subject inside the data acquisition room.
All music/movie clips were played to the participant at 20
frames/second, upon normalizing the audio volume to have
a maximum power amplitude of 1.

Stereo speakers were also placed in the MEG acquisition
room for rendering the audio in the music/movie clips.
Also, each participant was provided with a microphone to
communicate with the experimenter during the recording or
in the case of an emergency. The Neuromag device, which
outputs 306 channels (corresponding to 102 magnetometers
and 204 gradiometers) with a sampling frequency of 1 KHz,
is used for recording MEG responses.

2) Protocol: 7 university graduate students (4 male, 3
female) participated in the experiments. Data acquisition for
each participant was spread over two sessions interspersed
by a day- movie clips were presented in one session, while
music videos were presented in the other. For four of the
subjects, movie clips were shown first, while three viewed
music videos before the movie clips. During each session,
the music/movie clips were shown in random order, and in
such a way that two clips of similar valence and arousal did
not follow one another. To avoid fatigue, each acquisition
session was split into two halves (with 20 music/16 movie
clips shown in each half) and lasted for one hour in total.

At the beginning of each recording session, the participant
was first briefed about the experiment, and was asked to
remove any metallic objects he/she was wearing before
entering the MEG room- this was mandatory as metals would
interfere with the magnetic field. Then, a practice trial was
conducted so that the subject could acquaint him/herself with
the protocol. Each acquisition session involved a series of
trials. During each trial, a fixation cross was first shown
for 4 seconds to prepare the viewer and to gauge his/her
rest-state response. Upon stimulus presentation, the subject
conveyed the emotion elicited in him/her by the stimulus
to the experimenter through the microphone. Ratings were
acquired for (i) arousal (’How intense is your emotional

feeling on watching the clip?’) on a scale of 0 (calm) to 4
(highly aroused), and (ii) valence (’How pleasant do you feel
after watching this clip?’) on a scale of -2 (very unpleasant)
to 2 (very pleasant). A maximum of 15 seconds was available
to the participant to convey each rating. The protocol timeline
for each trial is presented in Fig.1(b).

D. Self-assessment ratings: Music vs movie clips

In this section, we compare the valence-arousal ratings
provided by participants for music and movie clips. Partici-
pant ratings are (i) a conscious reflection of their emotional
state upon viewing the stimuli, and therefore, should be
correlated with their physiological responses (ii) ultimately
used for valence and arousal classification, and the variance
in ratings can provide vital cues regarding the best-case
classification results and (iii) also indicative of whether
the presented music/movie stimuli can effectively evoke an
emotional response from viewers.

Fig.2 presents plots of the mean valence-arousal (VA)
ratings obtained from 7 participants for the music and movie
clips respectively. The blue, cyan, black and red colors
are used to respectively denote high arousal, high valence
(HAHV), low arousal, high valence (LAHV), low arousal,
low valence (LALV) and high arousal, low valence (HALV)
stimuli as per the ground-truth ratings. Note that even though
the ratings have been compiled from few subjects, we still
obtain a C-shape (facing upwards) for both movie and music
clips, consistent with previous studies such as [11], [10].
The C-shape is attributed to the fact that it is generally
difficult to evoke low-arousal and strong valence responses.
This phenomenon is particularly obvious in the case of music
clips, where there is considerable overlap between the cyan
(LAHV), black (LALV) and red (HAHV) clusters. However,
this overlap is not as pronounced for the movie clips.

To further investigate this observation, we performed a
Wilcoxon signed-rank test as in [10] to check if high and
low arousal stimuli induced a difference in valence ratings.
The test showed that a high/low arousal rating significantly
influenced valence ratings for music stimuli (p = 0.005),
while no such influence could be observed for movie clips
(p = 0.791). Therefore, valence-arousal distinction is clearer
for movie clips as compared to music videos.

Noting that significant inter-individual differences could
have influenced the observed stimuli distribution, we also
performed a second experiment. Assuming that the ground-
truth VA ratings were provided by an ‘ideal’ annotator,
we compared the mean agreement between the participant-
ground truth ratings using Cohen’s Kappa measure. The
Cohen’s Kappa coefficient measures agreement between two
raters who classify N items into C mutually exclusive
classes, and is computed as κ = (P (a) − P (e))/(1 −
P (e)), where P (a) denotes relative observed agreement
between the raters, while P (e) denotes probability of chance
agreement- k increases from 0-1 as the inter-rater agreement
increases from random to perfect. For each subject, we
thresholded the user ratings based on their mean rating to
assign a stimulus to either High/Low valence/arousal. Then,



(a) (b)

Fig. 1. (a) Experiment set-up overview and (b) Protocol timeline for a single-trial acquisition.

we computed κ between the determined and the ground-truth
labels, with P (a) = 0.5. The mean κ over all subjects for
the music-valence, music-arousal, movie-valence and movie-
arousal were found to be 0.5357, 0.2143, 0.7054 and 0.2321
respectively. This observation demonstrates that inter-rater
agreement is higher, especially for valence, between the two
subject populations (one used for ground-truth compilation,
and the other performing the actual experiment), implying
that movie stimuli are more effective in eliciting similar
emotions across many subjects as compared to music videos.

To summarize the comparison between music videos and
music clips, we observe that the valence-arousal distinction
is better perceived for movies, and viewers are able deter-
mine clip valence independent of arousal for movie clips.
Also, movie clips are rated more consistently across subject
populations, indicating that they are more effective for emo-
tion elicitation. We also observe better affect classification
with MEG for movies as detailed in section V. The next
section details the MEG feature extraction process prior to
classification.

(a) (b)
Fig. 2. Mean self-assessment VA ratings for (a) music and (b) movie clips.

IV. MEG DATA ANALYSIS

This section describes in detail, the steps involved in (a)
preprocessing the MEG data, (b) extracting MEG features
and (c) determining the stimulus label for classification.
MEG responses for both music and movie stimuli are pro-
cessed in an identical manner.

A. Preprocessing MEG Data

The data preprocessing consists of four main steps that are
handled using the MATLAB Fieldtrip toolbox [14]:
(a) Trial Segmentation: Participant responses correspond-

ing to each trial are extracted by segmenting the MEG

signal from 1 second prior to stimulus presentation (pre-
stimulus) to the end of stimulus presentation. In this
way, for each subject, we extract 32 and 40 trials for
the movie clips and music videos respectively.

(b) Baseline correction: The mean MEG response ampli-
tude in the last 200 ms of pre-stimulus is considered as
the baseline for all trials, and this value is subtracted
from the trial response. This step corrects stimulus-
unrelated MEG signal variations over time.

(c) Frequency domain filtering: Low-pass and high-pass
filtering with cut-off frequencies of 45 Hz and 1 Hz
respectively are performed, as the relevant MEG fre-
quency bands are between 3-45 Hz. Applying the high-
pass filter, low frequency noise in the MEG signal gen-
erated by moving vehicles is removed. Conversely, the
low-pass filter removes some high frequency artifacts
generated by muscle activities (between 110Hz- 150
Hz) and electrical noise (50 Hz, 100 Hz and 150 Hz).

(d) Channel correction: Dead and bad channels are re-
moved from the MEG data and replaced with interpo-
lated values. Dead channels have zero value over time,
while bad channels are outliers with respect to metrics
such as signal variance and z-value of signal power over
time. To preserve the consistency of MEG data over
each trial and subject, removed channels are replaced
with the average of neighbor channels.

B. Feature Extraction
Upon segmenting the MEG response for each trial, the

most informative content for affect classification needs to
be extracted. In MEG studies, the spectral power of cer-
tain frequencies is the popularly used feature. There are
several methods for computing spectral power of signals
like Hanning tapers, multitapers and wavelet. Multi-tapers
and wavelet are typically used in order to achieve a better
control over the frequency smoothing. In these methods,
high frequency smoothing has been found to be principally
beneficial when dealing with brain signals above 30 Hz [13],
[16]. Therefore, we use the wavelet method to transform our
signal to the time-frequency domain. We use a time-step of 1
second for temporal processing of the signal corresponding
to each trial and a frequency step of 1 Hz to scan through a
frequency range of 1-45 Hz.

Upon applying a wavelet transform on the MEG data,
we perform the following steps: (a) In order to better



elucidate the MEG response dynamics following stimulus
presentation, baseline power corresponding to 1 second pre-
stimulus interval is subtracted from the trial power. (b) Since
magnetometers are highly prone to environmental noise, we
only extract features from the gradiometer channels for better
accuracy (i.e., information from 102 of the 306 channels are
discarded). (c) Then, we use a standard Fieldtrip function for
combining the two planar gradiometers’ spectral power for
each sensor. This step enables a reduction in the number of
spatial MEG features to 102.

Per subject and per movie clip, the output of the above
process is a 3-dimensional matrix with the following dimen-
sions: synthetic information of 102 sensors × clip length
time points × 45 frequencies. Similarly, for each of the 40
music clips, the output dimensions are 102×60×45. We use
this 3-D array to compute 4 different sets of features namely,
i) full spatial, ii) compacted feature, iii) 27 DCT coefficients
and iv) 64 DCT coefficients as follows:

(i) Full spatial features are computed by averaging the
spectral power over time and four major frequency bands
that are: theta (3-7 Hz), alpha (8-13 Hz), beta (14-29 Hz)
and gamma (30-45 Hz). As we are preserving the data of all
102 sensors, these features contain full spatial information.
Therefore, for each trial, a full spatial feature vector contains
408 (102×4 bands) features. However, full spatial features
do not encode any temporal information.

(ii) Compacted features are computed by averaging the
spectral power over all the channels, time, and each fre-
quency band. Therefore, a compacted feature vector contains
only 4 features that represent average spatial and temporal
activities over the four frequency bands.

(iii,iv) DCT features- we apply a 3D Discrete Cosine
Transform (DCT) on time-frequency spectral power for each
trial. Then, we use the leading coefficients as our feature
vectors. The 27 DCT Coeffs and 64 DCT Coeffs feature sets
respectively contain 27 and 64 coefficients in their feature
vectors. In comparison with the other features, the DCT
features incorporate information from the spatial, time and
frequency dimensions.

According to Ahmed et al.[1], signal information can
be approximated effectively with few low-frequency DCT
components. DCT is often used in signal, image and speech
compression applications due to its strong energy compaction
ability. Davis et al. [4] showed that the perceptually related
aspects of the short-term speech spectrum contributed to
superior performance of the mel-frequency cepstrum coef-
ficients in such applications. Inspired by these works, we
exploited DCT for compressing information encoded in time-
frequency domain over channels. Here, we employ DCT
to also retain temporal variations while using only a small
number of features. The 3D DCT coefficient matrix, B, is
calculated as:
Bpqr = αpαqαr

L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

Almn cos
π (2l + 1) p

2L

cos
π (2m+ 1) q

2M
cos

π (2n+ 1) r

2N
,

0 ≤ p ≤ L− 1, 0 ≤ q ≤M − 1, 0 ≤ r ≤ N − 1

where
αp =

{ 1√
L
, p = 0√

2
L , 0<p ≤ L− 1

αq =

{ 1√
M
, q = 0√

2
M , 0<q ≤ M − 1

αr =

{ 1√
N
, q = r√

2
N , 0<r ≤ N − 1

Here, L,M,N represent the number of spatial, time and
frequency steps, respectively. A is the 3 dimensional matrix
of power spectral features. Therefore, after computing 3D
DCT coefficients, we only use a sub-cube constructed by the
first n coefficients from each of 3 feature dimensions. The
feature vector for each trial will now contain n3 entries. For
example, in the case of 27 DCT Coeffs, we assign n = 3.
The next subsection describes the classification procedure
employing the four different feature sets, following which,
we discuss the experimental results.

C. Classification procedure

For each of our 7 subjects, we have 32 trials for movie
clips and 40 trials for music videos. We have also extracted
4 sets of features for each trial and we want to decode the
affective trial responses using these feature representations.
To achieve this goal, we solve two binary classification
problems- employing the MEG features to differentiate be-
tween (i) low versus high arousal and (ii) low versus high
valence. To this end, we need to associate a label to each of
the stimuli for classification.

To assign a label to a particular stimulus, we employed a
majority vote-based scheme as follows. We computed the
median rating provided by viewers for each movie/music
clip. The mean of these medians was then taken as the thresh-
old value separately for movie/music clips. Clips whose me-
dian valence/arousal ratings were greater than the threshold
were assigned a ’high’ (valence/arousal) label, while others
were assigned the ’low’ label.

The distribution of ’high’ and ’low’ valence/arousal labels
for the music and movie stimuli is presented in Table I. For
both music and movie clips, the distribution of the ’high’ and
’low’ classes is unbalanced for both valence and arousal-
the valence distribution for movies is the one that most
resembles a balanced distribution. Also, for both music and
movie clips, the distribution-bias along arousal is greater than
for valence. Given this unbalanced distribution of stimuli, we
use F1-scores alongside classification accuracies to report our
classification results. Also, similar to [10], we use a naive-
Bayes classifier to deal with class imbalance in small training
sets. The leave-one-out cross validation scheme is employed
in the classification framework. For each participant, we
train the model with all-but-one stimulus ratings and the
corresponding MEG responses, and use the model to predict
the label of the remaining stimulus. The classification results
are presented in the next section.

V. EXPERIMENTAL RESULTS

Table II shows measured classification accuracy and F1-
scores for music videos and movie clips, respectively. To test
for significance, the F1-distribution over participants is com-
pared to the 0.5 baseline using an independent one-sample



Music video clips Movie video clips
Class Arousal Valence Arousal Valence
High 28 (70%) 26 (65%) 12 (37.5%) 14 (44%)
Low 12 (30%) 14 (35%) 20 (62.5%) 18 (56%)

TABLE I
DISTRIBUTION (NUMBERS AND PERCENTAGE) OF SAMPLES IN EACH

CLASS OBTAINED ON STIMULUS LABELING.

Music video clips Arousal Valence
Feature Type ACC F1 ACC F1
Full spatial 0.639 0.381 0.532 0.360
Compact Features 0.657 0.538 0.611 0.564
27 DCT Coefs 0.593 0.476 0.554 0.489
64 DCT Coefs 0.636 0.493 0.632 0.553
Movie video clips Arousal Valence
Feature Type ACC F1 ACC F1
Full spatial 0.567 0.479 0.518 0.480
Compact Features 0.585 0.500 0.531 0.493
27 DCT Coefs 0.656 0.617* 0.549 0.505
64 DCT Coefs 0.607 0.553* 0.554 0.503

TABLE II
AVERAGE ACCURACIES (ACC) AND F1-SCORES OVER

PARTICIPANTS FOR MUSIC VIDEO CLIPS AND MOVIE VIDEO

CLIPS. STARS INDICATE WHETHER THE F1-SCORE

DISTRIBUTION OVER SUBJECTS IS SIGNIFICANTLY HIGHER

THAN 0.5 ACCORDING TO AN INDEPENDENT ONE-SAMPLE

T-TEST (* = P <0.05).

t-test. As evident from the table, none of the classification
results obtained for music videos are significant. On the
other hand, two significant results (p<0.05) are obtained for
arousal classification using DCT features in the case of movie
clips. Based on the presented results, we summarize our key
observations as follows:

1. The MEG-based affect characterization approach
achieves above-chance F1 scores for arousal. There-
fore, MEG signals effectively encode affective user
responses. The fact that brain signals encode arousal
better than valence is also observed in previous EEG
studies such as [10]. However, EEG and MEG signals
encode complementary aspects of the brain response-
more investigation is required to determine whether
arousal-related information encoded by MEG is similar
to EEG or different.

2. Also, classification results confirm that MEG responses
characterize affect better for movie clips than music
videos. The fact that evoked emotions are more effective
and consistent across subjects for movie clips suggests
that they are perhaps, better stimuli to use for affective
studies, as compared to music videos.

3. The best F1-measures are obtained with the DCT co-
efficients. The DCT coefficients encode time-related
response patterns in addition to spatial and frequency
information. This suggests that time-related information
could be a critical factor for encoding affect. Again,
investigation with more subjects is required to validate
this hypothesis.

VI. CONCLUSION AND FUTURE WORK

This paper presents the first work attempting single trial
classification of affective video stimuli such as movie clips

and music videos. Based on a study conducted with seven
subjects, we observe that the MEG signal can effectively
encode emotional responses of viewers. Our analysis also
suggests that movie clips are more suitable than music videos
for eliciting emotions in viewers as (i) valence-arousal ratings
are found to be more consistent across subjects and (ii) MEG
correlates better with emotional ratings for the movie clips.
The obvious limitation of this study is that it involves a small
number of subjects and future work involves (i) extending
the study including more participants to validate the current
findings and (ii) employing a multimodal approach involving
peripheral physiological signals such as ECG, EMG and
GSR in addition to MEG, to effectively characterize affective
viewer responses.
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